4 research outputs found

    Maximal strength training : the impact of eccentric overload

    Get PDF
    The search for the most potent strength training intervention is continuous. Maximal strength training (MST) yields large improvements in force-generating capacity (FGC), largely attributed to efferent neural drive enhancement. However, it remains elusive whether eccentric overload, before the concentric phase, may augment training-induced neuromuscular adaptations. A total of 53 23 ± 3 (SD)-yr-old untrained males were randomized to either a nontraining control group (CG) or one of two training groups performing leg press strength training with linear progression, three times per week for 8 wk. The first training group carried out MST with four sets of four repetitions at ~90% one-repetition maximum (1RM) in both action phases. The second group performed MST with an augmented eccentric load of 150% 1RM (eMST). Measurements were taken of 1RM and rate of force development (RFD), countermovement jump (CMJ) performance, and evoked potentials recordings [V-wave (V) and H-reflex (H) normalized to M-wave (M) in musculus soleus]. 1RM increased from 133 ± 16 to 157 ± 23 kg and 123 ± 18 to 149 ± 22 kg and CMJ by 2.3 ± 3.6 and 2.2 ± 3.7cm for MST and eMST, respectively (all P < 0.05). Early, late, and maximal RFD increased in both groups [634–1,501 N/s (MST); 644–2,111 N/s (eMST); P < 0.05]. These functional improvements were accompanied by increased V/M-ratio (MST: 0.34 ± 0.11 to 0.42 ± 14; eMST: .36 ± 0.14 to 0.43 ± 13; P < 0.05). Resting H/M-ratio remained unchanged. Training-induced improvements did not differ. All increases, except for CMJ, were different from the CG. MST is an enterprise for large gains in FGC and functional performance. Eccentric overload did not induce additional improvements, suggesting firing frequency and motor unit recruitment during MST may be maximal.publishedVersio

    Prediction of VO2max from submaximal exercise using the smartphone application myworkout GO : validation study of a digital health method

    No full text
    Background: Physical inactivity remains the largest risk factor for the development of cardiovascular disease worldwide. Wearable devices have become a popular method of measuring activity-based outcomes and facilitating behavior change to increase cardiorespiratory fitness (CRF) or maximal oxygen consumption (VO2max) and reduce weight. However, it is critical to determine their accuracy in measuring these variables. Objective: This study aimed to determine the accuracy of using a smartphone and the application Myworkout GO for submaximal prediction of VO2max. Methods: Participants included 162 healthy volunteers: 58 women and 104 men (17-73 years old). The study consisted of 3 experimental tests randomized to 3 separate days. One-day VO2max was assessed with Metamax II, with the participant walking or running on the treadmill. On the 2 other days, the application Myworkout GO used standardized high aerobic intensity interval training (HIIT) on the treadmill to predict VO2max. Results: There were no significant differences between directly measured VO2max (mean 49, SD 14 mL/kg/min) compared with the VO2max predicted by Myworkout GO (mean 50, SD 14 mL/kg/min). The direct and predicted VO2max values were highly correlated, with an R2 of 0.97 (P<.001) and standard error of the estimate (SEE) of 2.2 mL/kg/min, with no sex differences. Conclusions: Myworkout GO accurately calculated VO2max, with an SEE of 4.5% in the total group. The submaximal HIIT session (4 x 4 minutes) incorporated in the application was tolerated well by the participants. We present health care providers and their patients with a more accurate and practical version of health risk estimation. This might increase physical activity and improve exercise habits in the general population.publishedVersio

    Smartphone-assisted high-intensity interval training in inflammatory rheumatic disease patients : randomized controlled trial

    No full text
    Background: Patients with inflammatory rheumatic diseases (IRDs) experience disease-related barriers to physical training. Compared with the general population, IRD patients are reported to have reduced maximal oxygen uptake (VO2max) and physical activity levels. Supervised high-intensity interval training (HIIT) is documented to counteract the reduced VO2max and poor cardiovascular health associated with IRDs. However, supervised HIIT is resource demanding. Objective: This study sought to investigate if self-administered 4×4-min HIIT guided by a smartphone app (Myworkout GO) could yield similar HIIT-induced effects as standard 4×4-min HIIT performed under the guidance and supervision of health care professionals. The effects studied were on VO2max and health-related quality of life (HRQoL). Methods: Forty patients (33 female patients, mean age 48 years, SD 12 years; 7 male patients, mean age 52 years, SD 11 years) diagnosed with rheumatoid arthritis, spondyloarthritis, or systemic lupus erythematosus were randomized to a supervised group (SG) or an app group (AG). Both groups were instructed to perform 4×4-min intervals with a rate of perceived exertion of 16 to 17, corresponding to 85% to 95% of the maximal heart rate, twice a week for 10 weeks. Treadmill VO2max and HRQoL measured using RAND-36 were assessed before and after the exercise period. Results: VO2max increased (P<.001) in both groups after 10 weeks of HIIT, with improvements of 3.6 (SD 1.3) mL/kg/min in the SG and 3.7 (SD 1.5) mL/kg/min in the AG. This was accompanied by increases in oxygen pulse in both groups (P<.001), with no between-group differences apparent for either measure. Improvements in the HRQoL dimensions of bodily pain, vitality, and social functioning were observed for both groups (P<.001 to P=.04). Again, no between-group differences were detected. Conclusions: High-intensity 4×4-min interval training increased VO2max and HRQoL, contributing to patients’ reduced cardiovascular disease risk, improved health and performance, and enhanced quality of life. Similar improvements were observed following HIIT when IRD patients were guided using perceived exertion by health care professionals or the training was self-administered and guided by the app Myworkout GO. Utilization of the app may help reduce the cost of HIIT as a treatment strategy in this patient population.publishedVersio
    corecore